Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Math Biosci Eng ; 21(1): 1625-1649, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38303481

Fake face identity is a serious, potentially fatal issue that affects every industry from the banking and finance industry to the military and mission-critical applications. This is where the proposed system offers artificial intelligence (AI)-based supported fake face detection. The models were trained on an extensive dataset of real and fake face images, incorporating steps like sampling, preprocessing, pooling, normalization, vectorization, batch processing and model training, testing-, and classification via output activation. The proposed work performs the comparative analysis of the three fusion models, which can be integrated with Generative Adversarial Networks (GAN) based on the performance evaluation. The Model-3, which contains the combination of DenseNet-201+ResNet-102+Xception, offers the highest accuracy of 0.9797, and the Model-2 with the combination of DenseNet-201+ResNet-50+Inception V3 offers the lowest loss value of 0.1146; both are suitable for the GAN integration. Additionally, the Model-1 performs admirably, with an accuracy of 0.9542 and a loss value of 0.1416. A second dataset was also tested where the proposed Model-3 provided maximum accuracy of 86.42% with a minimum loss of 0.4054.


Artificial Intelligence , Industry
2.
Sci Rep ; 14(1): 1333, 2024 01 16.
Article En | MEDLINE | ID: mdl-38228772

In previous studies, replicated and multiple types of speech data have been used for Parkinson's disease (PD) detection. However, two main problems in these studies are lower PD detection accuracy and inappropriate validation methodologies leading to unreliable results. This study discusses the effects of inappropriate validation methodologies used in previous studies and highlights the use of appropriate alternative validation methods that would ensure generalization. To enhance PD detection accuracy, we propose a two-stage diagnostic system that refines the extracted set of features through [Formula: see text] regularized linear support vector machine and classifies the refined subset of features through a deep neural network. To rigorously evaluate the effectiveness of the proposed diagnostic system, experiments are performed on two different voice recording-based benchmark datasets. For both datasets, the proposed diagnostic system achieves 100% accuracy under leave-one-subject-out (LOSO) cross-validation (CV) and 97.5% accuracy under k-fold CV. The results show that the proposed system outperforms the existing methods regarding PD detection accuracy. The results suggest that the proposed diagnostic system is essential to improving non-invasive diagnostic decision support in PD.


Parkinson Disease , Voice , Humans , Algorithms , Parkinson Disease/diagnosis , Support Vector Machine , Neural Networks, Computer
3.
Diagnostics (Basel) ; 13(22)2023 Nov 14.
Article En | MEDLINE | ID: mdl-37998577

Thalassemia represents one of the most common genetic disorders worldwide, characterized by defects in hemoglobin synthesis. The affected individuals suffer from malfunctioning of one or more of the four globin genes, leading to chronic hemolytic anemia, an imbalance in the hemoglobin chain ratio, iron overload, and ineffective erythropoiesis. Despite the challenges posed by this condition, recent years have witnessed significant advancements in diagnosis, therapy, and transfusion support, significantly improving the prognosis for thalassemia patients. This research empirically evaluates the efficacy of models constructed using classification methods and explores the effectiveness of relevant features that are derived using various machine-learning techniques. Five feature selection approaches, namely Chi-Square (χ2), Exploratory Factor Score (EFS), tree-based Recursive Feature Elimination (RFE), gradient-based RFE, and Linear Regression Coefficient, were employed to determine the optimal feature set. Nine classifiers, namely K-Nearest Neighbors (KNN), Decision Trees (DT), Gradient Boosting Classifier (GBC), Linear Regression (LR), AdaBoost, Extreme Gradient Boosting (XGB), Random Forest (RF), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM), were utilized to evaluate the performance. The χ2 method achieved accuracy, registering 91.56% precision, 91.04% recall, and 92.65% f-score when aligned with the LR classifier. Moreover, the results underscore that amalgamating over-sampling with Synthetic Minority Over-sampling Technique (SMOTE), RFE, and 10-fold cross-validation markedly elevates the detection accuracy for αT patients. Notably, the Gradient Boosting Classifier (GBC) achieves 93.46% accuracy, 93.89% recall, and 92.72% F1 score.

4.
Biomedicines ; 11(6)2023 Jun 15.
Article En | MEDLINE | ID: mdl-37371819

Esophagitis, cancerous growths, bleeding, and ulcers are typical symptoms of gastrointestinal disorders, which account for a significant portion of human mortality. For both patients and doctors, traditional diagnostic methods can be exhausting. The major aim of this research is to propose a hybrid method that can accurately diagnose the gastrointestinal tract abnormalities and promote early treatment that will be helpful in reducing the death cases. The major phases of the proposed method are: Dataset Augmentation, Preprocessing, Features Engineering (Features Extraction, Fusion, Optimization), and Classification. Image enhancement is performed using hybrid contrast stretching algorithms. Deep Learning features are extracted through transfer learning from the ResNet18 model and the proposed XcepNet23 model. The obtained deep features are ensembled with the texture features. The ensemble feature vector is optimized using the Binary Dragonfly algorithm (BDA), Moth-Flame Optimization (MFO) algorithm, and Particle Swarm Optimization (PSO) algorithm. In this research, two datasets (Hybrid dataset and Kvasir-V1 dataset) consisting of five and eight classes, respectively, are utilized. Compared to the most recent methods, the accuracy achieved by the proposed method on both datasets was superior. The Q_SVM's accuracies on the Hybrid dataset, which was 100%, and the Kvasir-V1 dataset, which was 99.24%, were both promising.

5.
Diagnostics (Basel) ; 13(9)2023 Apr 29.
Article En | MEDLINE | ID: mdl-37174985

Lung and colon cancers are among the leading causes of human mortality and morbidity. Early diagnostic work up of these diseases include radiography, ultrasound, magnetic resonance imaging, and computed tomography. Certain blood tumor markers for carcinoma lung and colon also aid in the diagnosis. Despite the lab and diagnostic imaging, histopathology remains the gold standard, which provides cell-level images of tissue under examination. To read these images, a histopathologist spends a large amount of time. Furthermore, using conventional diagnostic methods involve high-end equipment as well. This leads to limited number of patients getting final diagnosis and early treatment. In addition, there are chances of inter-observer errors. In recent years, deep learning has shown promising results in the medical field. This has helped in early diagnosis and treatment according to severity of disease. With the help of EffcientNetV2 models that have been cross-validated and tested fivefold, we propose an automated method for detecting lung (lung adenocarcinoma, lung benign, and lung squamous cell carcinoma) and colon (colon adenocarcinoma and colon benign) cancer subtypes from LC25000 histopathology images. A state-of-the-art deep learning architecture based on the principles of compound scaling and progressive learning, EffcientNetV2 large, medium, and small models. An accuracy of 99.97%, AUC of 99.99%, F1-score of 99.97%, balanced accuracy of 99.97%, and Matthew's correlation coefficient of 99.96% were obtained on the test set using the EffcientNetV2-L model for the 5-class classification of lung and colon cancers, outperforming the existing methods. Using gradCAM, we created visual saliency maps to precisely locate the vital regions in the histopathology images from the test set where the models put more attention during cancer subtype predictions. This visual saliency maps may potentially assist pathologists to design better treatment strategies. Therefore, it is possible to use the proposed pipeline in clinical settings for fully automated lung and colon cancer detection from histopathology images with explainability.

6.
Diagnostics (Basel) ; 13(8)2023 Apr 20.
Article En | MEDLINE | ID: mdl-37189591

While the world is working quietly to repair the damage caused by COVID-19's widespread transmission, the monkeypox virus threatens to become a global pandemic. There are several nations that report new monkeypox cases daily, despite the virus being less deadly and contagious than COVID-19. Monkeypox disease may be detected using artificial intelligence techniques. This paper suggests two strategies for improving monkeypox image classification precision. Based on reinforcement learning and parameter optimization for multi-layer neural networks, the suggested approaches are based on feature extraction and classification: the Q-learning algorithm determines the rate at which an act occurs in a particular state; Malneural networks are binary hybrid algorithms that improve the parameters of neural networks. The algorithms are evaluated using an openly available dataset. In order to analyze the proposed optimization feature selection for monkeypox classification, interpretation criteria were utilized. In order to evaluate the efficiency, significance, and robustness of the suggested algorithms, a series of numerical tests were conducted. There were 95% precision, 95% recall, and 96% f1 scores for monkeypox disease. As compared to traditional learning methods, this method has a higher accuracy value. The overall macro average was around 0.95, and the overall weighted average was around 0.96. When compared to the benchmark algorithms, DDQN, Policy Gradient, and Actor-Critic, the Malneural network had the highest accuracy (around 0.985). In comparison with traditional methods, the proposed methods were found to be more effective. Clinicians can use this proposal to treat monkeypox patients and administration agencies can use it to observe the origin and current status of the disease.

7.
Soft comput ; 27(13): 9217, 2023.
Article En | MEDLINE | ID: mdl-37255917

[This retracts the article DOI: 10.1007/s00500-021-06075-8.].

8.
Sensors (Basel) ; 23(8)2023 Apr 09.
Article En | MEDLINE | ID: mdl-37112181

Intelligent transportation systems (ITSs) have become an indispensable component of modern global technological development, as they play a massive role in the accurate statistical estimation of vehicles or individuals commuting to a particular transportation facility at a given time. This provides the perfect backdrop for designing and engineering an adequate infrastructural capacity for transportation analyses. However, traffic prediction remains a daunting task due to the non-Euclidean and complex distribution of road networks and the topological constraints of urbanized road networks. To solve this challenge, this paper presents a traffic forecasting model which combines a graph convolutional network, a gated recurrent unit, and a multi-head attention mechanism to simultaneously capture and incorporate the spatio-temporal dependence and dynamic variation in the topological sequence of traffic data effectively. By achieving 91.8% accuracy on the Los Angeles highway traffic (Los-loop) test data for 15-min traffic prediction and an R2 score of 85% on the Shenzhen City (SZ-taxi) test dataset for 15- and 30-min predictions, the proposed model demonstrated that it can learn the global spatial variation and the dynamic temporal sequence of traffic data over time. This has resulted in state-of-the-art traffic forecasting for the SZ-taxi and Los-loop datasets.

9.
Biomedicines ; 11(3)2023 Mar 07.
Article En | MEDLINE | ID: mdl-36979795

The Human Activity Recognition (HAR) system is the hottest research area in clinical research. The HAR plays a vital role in learning about a patient's abnormal activities; based upon this information, the patient's psychological state can be estimated. An epileptic seizure is a neurological disorder of the human brain and affects millions of people worldwide. If epilepsy is diagnosed correctly and in an early stage, then up to 70% of people can be seizure-free. There is a need for intelligent automatic HAR systems that help clinicians diagnose neurological disorders accurately. In this research, we proposed a Deep Learning (DL) model that enables the detection of epileptic seizures in an automated way, addressing a need in clinical research. To recognize epileptic seizures from brain activities, EEG is a raw but good source of information. In previous studies, many techniques used raw data from EEG to help recognize epileptic patient activities; however, the applied method of extracting features required much intensive expertise from clinical aspects such as radiology and clinical methods. The image data are also used to diagnose epileptic seizures, but applying Machine Learning (ML) methods could address the overfitting problem. In this research, we mainly focused on classifying epilepsy through physical epileptic activities instead of feature engineering and performed the detection of epileptic seizures in three steps. In the first step, we used the open-source numerical dataset of epilepsy of Bonn university from the UCI Machine Learning repository. In the second step, data were fed to the proposed ELM model for training in different training and testing ratios with a little bit of rescaling because the dataset was already pre-processed, normalized, and restructured. In the third step, epileptic and non-epileptic activity was recognized, and in this step, EEG signal feature extraction was automatically performed by a DL model named ELM; features were selected by a Feature Selection (FS) algorithm based on ELM and the final classification was performed using the ELM classifier. In our presented research, seven different ML algorithms were applied for the binary classification of epileptic activities, including K-Nearest Neighbor (KNN), Naïve Bayes (NB), Logistic Regression (LR), Stochastic Gradient Boosting Classifier (SGDC), Gradient Boosting Classifier (GB), Decision Trees (DT), and three deep learning models named Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN). After deep analysis, it is observed that the best results were obtained by our proposed DL model, Extreme Learning Machine (ELM), with an accuracy of 100% accuracy and a 0.99 AUC. Such high performance has not attained in previous research. The proposed model's performance was checked with other models in terms of performance parameters, namely confusion matrix, accuracy, precision, recall, F1-score, specificity, sensitivity, and the ROC curve.

10.
Biomedicines ; 11(2)2023 Feb 02.
Article En | MEDLINE | ID: mdl-36830975

Dementia is a cognitive disorder that mainly targets older adults. At present, dementia has no cure or prevention available. Scientists found that dementia symptoms might emerge as early as ten years before the onset of real disease. As a result, machine learning (ML) scientists developed various techniques for the early prediction of dementia using dementia symptoms. However, these methods have fundamental limitations, such as low accuracy and bias in machine learning (ML) models. To resolve the issue of bias in the proposed ML model, we deployed the adaptive synthetic sampling (ADASYN) technique, and to improve accuracy, we have proposed novel feature extraction techniques, namely, feature extraction battery (FEB) and optimized support vector machine (SVM) using radical basis function (rbf) for the classification of the disease. The hyperparameters of SVM are calibrated by employing the grid search approach. It is evident from the experimental results that the newly pr oposed model (FEB-SVM) improves the dementia prediction accuracy of the conventional SVM by 6%. The proposed model (FEB-SVM) obtained 98.28% accuracy on training data and a testing accuracy of 93.92%. Along with accuracy, the proposed model obtained a precision of 91.80%, recall of 86.59, F1-score of 89.12%, and Matthew's correlation coefficient (MCC) of 0.4987. Moreover, the newly proposed model (FEB-SVM) outperforms the 12 state-of-the-art ML models that the researchers have recently presented for dementia prediction.

11.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Article En | MEDLINE | ID: mdl-36832110

Diabetic retinopathy (DR) is one of the major complications caused by diabetes and is usually identified from retinal fundus images. Screening of DR from digital fundus images could be time-consuming and error-prone for ophthalmologists. For efficient DR screening, good quality of the fundus image is essential and thereby reduces diagnostic errors. Hence, in this work, an automated method for quality estimation (QE) of digital fundus images using an ensemble of recent state-of-the-art EfficientNetV2 deep neural network models is proposed. The ensemble method was cross-validated and tested on one of the largest openly available datasets, the Deep Diabetic Retinopathy Image Dataset (DeepDRiD). We obtained a test accuracy of 75% for the QE, outperforming the existing methods on the DeepDRiD. Hence, the proposed ensemble method may be a potential tool for automated QE of fundus images and could be handy to ophthalmologists.

12.
Diagnostics (Basel) ; 13(4)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36832137

Intracranial hemorrhage (ICH) can lead to death or disability, which requires immediate action from radiologists. Due to the heavy workload, less experienced staff, and the complexity of subtle hemorrhages, a more intelligent and automated system is necessary to detect ICH. In literature, many artificial-intelligence-based methods are proposed. However, they are less accurate for ICH detection and subtype classification. Therefore, in this paper, we present a new methodology to improve the detection and subtype classification of ICH based on two parallel paths and a boosting technique. The first path employs the architecture of ResNet101-V2 to extract potential features from windowed slices, whereas Inception-V4 captures significant spatial information in the second path. Afterwards, the detection and subtype classification of ICH is performed by the light gradient boosting machine (LGBM) using the outputs of ResNet101-V2 and Inception-V4. Thus, the combined solution, known as ResNet101-V2, Inception-V4, and LGBM (Res-Inc-LGBM), is trained and tested over the brain computed tomography (CT) scans of CQ500 and Radiological Society of North America (RSNA) datasets. The experimental results state that the proposed solution efficiently obtains 97.7% accuracy, 96.5% sensitivity, and 97.4% F1 score using the RSNA dataset. Moreover, the proposed Res-Inc-LGBM outperforms the standard benchmarks for the detection and subtype classification of ICH regarding the accuracy, sensitivity, and F1 score. The results prove the significance of the proposed solution for its real-time application.

13.
Article En | MEDLINE | ID: mdl-36834443

The diseases transmitted through vectors such as mosquitoes are named vector-borne diseases (VBDs), such as malaria, dengue, and leishmaniasis. Malaria spreads by a vector named Anopheles mosquitos. Dengue is transmitted through the bite of the female vector Aedes aegypti or Aedes albopictus mosquito. The female Phlebotomine sandfly is the vector that transmits leishmaniasis. The best way to control VBDs is to identify breeding sites for their vectors. This can be efficiently accomplished by the Geographical Information System (GIS). The objective was to find the relation between climatic factors (temperature, humidity, and precipitation) to identify breeding sites for these vectors. Our data contained imbalance classes, so data oversampling of different sizes was created. The machine learning models used were Light Gradient Boosting Machine, Random Forest, Decision Tree, Support Vector Machine, and Multi-Layer Perceptron for model training. Their results were compared and analyzed to select the best model for disease prediction in Punjab, Pakistan. Random Forest was the selected model with 93.97% accuracy. Accuracy was measured using an F score, precision, or recall. Temperature, precipitation, and specific humidity significantly affect the spread of dengue, malaria, and leishmaniasis. A user-friendly web-based GIS platform was also developed for concerned citizens and policymakers.


Aedes , Communicable Diseases , Dengue , Malaria , Vector Borne Diseases , Animals , Humans , Mosquito Vectors/physiology , Malaria/epidemiology , Aedes/physiology , Dengue/epidemiology
14.
Life (Basel) ; 13(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36676082

The emergency department of hospitals receives a massive number of patients with wrist fracture. For the clinical diagnosis of a suspected fracture, X-ray imaging is the major screening tool. A wrist fracture is a significant global health concern for children, adolescents, and the elderly. A missed diagnosis of wrist fracture on medical imaging can have significant consequences for patients, resulting in delayed treatment and poor functional recovery. Therefore, an intelligent method is needed in the medical department to precisely diagnose wrist fracture via an automated diagnosing tool by considering it a second option for doctors. In this research, a fused model of the deep learning method, a convolutional neural network (CNN), and long short-term memory (LSTM) is proposed to detect wrist fractures from X-ray images. It gives a second option to doctors to diagnose wrist facture using the computer vision method to lessen the number of missed fractures. The dataset acquired from Mendeley comprises 192 wrist X-ray images. In this framework, image pre-processing is applied, then the data augmentation approach is used to solve the class imbalance problem by generating rotated oversamples of images for minority classes during the training process, and pre-processed images and augmented normalized images are fed into a 28-layer dilated CNN (DCNN) to extract deep valuable features. Deep features are then fed to the proposed LSTM network to distinguish wrist fractures from normal ones. The experimental results of the DCNN-LSTM with and without augmentation is compared with other deep learning models. The proposed work is also compared to existing algorithms in terms of accuracy, sensitivity, specificity, precision, the F1-score, and kappa. The results show that the DCNN-LSTM fusion achieves higher accuracy and has high potential for medical applications to use as a second option.

15.
Life (Basel) ; 13(1)2023 Jan 04.
Article En | MEDLINE | ID: mdl-36676093

The skin is the human body's largest organ and its cancer is considered among the most dangerous kinds of cancer. Various pathological variations in the human body can cause abnormal cell growth due to genetic disorders. These changes in human skin cells are very dangerous. Skin cancer slowly develops over further parts of the body and because of the high mortality rate of skin cancer, early diagnosis is essential. The visual checkup and the manual examination of the skin lesions are very tricky for the determination of skin cancer. Considering these concerns, numerous early recognition approaches have been proposed for skin cancer. With the fast progression in computer-aided diagnosis systems, a variety of deep learning, machine learning, and computer vision approaches were merged for the determination of medical samples and uncommon skin lesion samples. This research provides an extensive literature review of the methodologies, techniques, and approaches applied for the examination of skin lesions to date. This survey includes preprocessing, segmentation, feature extraction, selection, and classification approaches for skin cancer recognition. The results of these approaches are very impressive but still, some challenges occur in the analysis of skin lesions because of complex and rare features. Hence, the main objective is to examine the existing techniques utilized in the discovery of skin cancer by finding the obstacle that helps researchers contribute to future research.

16.
Pers Ubiquitous Comput ; 27(3): 733-750, 2023.
Article En | MEDLINE | ID: mdl-33456433

The novel human coronavirus disease COVID-19 has become the fifth documented pandemic since the 1918 flu pandemic. COVID-19 was first reported in Wuhan, China, and subsequently spread worldwide. Almost all of the countries of the world are facing this natural challenge. We present forecasting models to estimate and predict COVID-19 outbreak in Asia Pacific countries, particularly Pakistan, Afghanistan, India, and Bangladesh. We have utilized the latest deep learning techniques such as Long Short Term Memory networks (LSTM), Recurrent Neural Network (RNN), and Gated Recurrent Units (GRU) to quantify the intensity of pandemic for the near future. We consider the time variable and data non-linearity when employing neural networks. Each model's salient features have been evaluated to foresee the number of COVID-19 cases in the next 10 days. The forecasting performance of employed deep learning models shown up to July 01, 2020, is more than 90% accurate, which shows the reliability of the proposed study. We hope that the present comparative analysis will provide an accurate picture of pandemic spread to the government officials so that they can take appropriate mitigation measures.

17.
Curr Oncol ; 29(10): 7498-7511, 2022 10 07.
Article En | MEDLINE | ID: mdl-36290867

The automated classification of brain tumors plays an important role in supporting radiologists in decision making. Recently, vision transformer (ViT)-based deep neural network architectures have gained attention in the computer vision research domain owing to the tremendous success of transformer models in natural language processing. Hence, in this study, the ability of an ensemble of standard ViT models for the diagnosis of brain tumors from T1-weighted (T1w) magnetic resonance imaging (MRI) is investigated. Pretrained and finetuned ViT models (B/16, B/32, L/16, and L/32) on ImageNet were adopted for the classification task. A brain tumor dataset from figshare, consisting of 3064 T1w contrast-enhanced (CE) MRI slices with meningiomas, gliomas, and pituitary tumors, was used for the cross-validation and testing of the ensemble ViT model's ability to perform a three-class classification task. The best individual model was L/32, with an overall test accuracy of 98.2% at 384 × 384 resolution. The ensemble of all four ViT models demonstrated an overall testing accuracy of 98.7% at the same resolution, outperforming individual model's ability at both resolutions and their ensembling at 224 × 224 resolution. In conclusion, an ensemble of ViT models could be deployed for the computer-aided diagnosis of brain tumors based on T1w CE MRI, leading to radiologist relief.


Brain Neoplasms , Glioma , Humans , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Neural Networks, Computer
18.
Comput Math Methods Med ; 2022: 9297548, 2022.
Article En | MEDLINE | ID: mdl-36164614

Patient record keeping plays a vital role in diagnoses and cures. Due to a shortage of time, most doctors write prescriptions manually in Pakistan. At times, it becomes difficult for pharmacists to read prescriptions properly. As a result, they may dispense the wrong medicine. This might cause risky and deadly effects on the patient's health. This paper proposes an online handwritten medical prescription recognition system that lets doctors write prescriptions on a tablet using a stylus and automatically recognizes the medicine. We use signature verification techniques to recognize the doctor's handwriting to overcome the problem of misinterpretation of the medicine name by the pharmacist. The proposed system stores different features like the pen coordinates, time, and several pen-ups and pen-downs. Besides using features already proposed in the literature for signature verification, we propose some new features that greatly enhance recognition accuracy. We built a dataset of 24 medicine names from two users and compared results using newly proposed features. We have obtained 84%, 78%, 77.47% 77.31%, 74.17%, 60%, 38.5%, 68%, and 61.64% accuracies for 9 users using SVM classifier.


Handwriting , Prescriptions , Humans
19.
Comput Intell Neurosci ; 2022: 1672677, 2022.
Article En | MEDLINE | ID: mdl-35965760

Hypertension is the main cause of blood pressure (BP), which further causes various cardiovascular diseases (CVDs). The recent COVID-19 pandemic raised the burden on the healthcare system and also limits the resources to these patients only. The treatment of chronic patients, especially those who suffer from CVD, has fallen behind, resulting in increased deaths from CVD around the world. Regular monitoring of BP is crucial to prevent CVDs as it can be controlled and diagnosed through constant monitoring. To find an effective and convenient procedure for the early diagnosis of CVDs, photoplethysmography (PPG) is recognized as a low-cost technology. Through PPG technology, various cardiovascular parameters, including blood pressure, heart rate, blood oxygen saturation, etc., are detected. Merging the healthcare domain with information technology (IT) is a demanding area to reduce the rehospitalization of CVD patients. In the proposed model, PPG signals from the Internet of things (IoT)-enabled wearable patient monitoring (WPM) devices are used to monitor the heart rate (HR), etc., of the patients remotely. This article investigates various machine learning techniques such as decision tree (DT), naïve Bayes (NB), and support vector machine (SVM) and the deep learning model one-dimensional convolutional neural network-long short-term memory (1D CNN-LSTM) to develop a system that assists physicians during continuous monitoring, which achieved an accuracy of 99.5% using PPG-BP data set. The proposed system provides cost-effective, efficient, and fully connected monitoring systems for cardiac patients.


COVID-19 , Cardiovascular Diseases , Bayes Theorem , COVID-19/diagnosis , Cardiovascular Diseases/diagnosis , Cloud Computing , Humans , Machine Learning , Pandemics , Photoplethysmography/methods
20.
Multimed Tools Appl ; 81(26): 37569-37589, 2022.
Article En | MEDLINE | ID: mdl-35968412

To identify various pneumonia types, a gap of 15% value is being created every five years. To fill this gap, accurate detection of chest disease is required in the healthcare department to avoid any serious issues in the future. Testing the affected lungs to detect a Coronavirus 2019 (COVID-19) using the same imaging modalities may detect some other chest diseases. This wrong diagnosis strongly needs a multidisciplinary approach to the right diagnosis of chest-related diseases. Only a few works till now are targeting pathological x-ray images. Many studies target only a single chest disease that is not enough to automate chest disease detection. Only a few studies regarding the observation of the COVID-19, but more cases are those where it can be misclassified as detecting techniques not providing any generic solution for all types of chest diseases. However, the existing studies can only detect if the person has COVID-19 or not. The proposed work significantly contributes to detecting COVID-19 and other chest diseases by providing useful analysis of chest-related diseases. One of our testing approaches achieves 90.22% accuracy for 15 types of chest disease with 100% correct classification of COVID-19. Though it analyzes the perfect detection as the accuracy level is high enough, but it would be an excellent decision to consider the proposed study until doctors can visually inspect the input images used by models that lead to its detection.

...